论文标题

基于特殊点的传感器对参数噪声的鲁棒性:哈密顿和liouvillian变性的作用

Robustness of exceptional-point-based sensors against parametric noise: The role of Hamiltonian and Liouvillian degeneracies

论文作者

Wiersig, Jan

论文摘要

最近的实验表明,对于具有强烈灵敏度增强的传感器,在开放量子和波系统(所谓的特殊点)中利用光谱奇异性的可行性。在这里,我们从理论上研究了经典参数噪声对此类传感器性能的影响。在随机汉密尔顿人的lindblad型形式主义中,我们讨论了频率分割的可分辨性和传感器的动态稳定性,并表明这些特性是相互关联的。至关重要的是在哈密顿族和相应的liouvillian的光谱中的不同特征。两个现实的例子,一个平均时间对称的二聚体和一个不对称反向散射的耳语微腔,说明了这些发现。

Recent experiments have demonstrated the feasibility of exploiting spectral singularities in open quantum and wave systems, so-called exceptional points, for sensors with strongly enhanced sensitivity. Here, we study theoretically the influence of classical parametric noise on the performance of such sensors. Within a Lindblad-type formalism for stochastic Hamiltonians we discuss the resolvability of frequency splittings and the dynamical stability of the sensor, and show that these properties are interrelated. Of central importance are the different features of exceptional points in the spectra of the Hamiltonian and the corresponding Liouvillian. Two realistic examples, a parity-time-symmetric dimer and a whispering-gallery microcavity with asymmetric backscattering, illustrate the findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源