论文标题

在全体形态图的边界和刚性上的新的Schwarz-Pick引理

A new Schwarz-Pick Lemma at the boundary and rigidity of holomorphic maps

论文作者

Bracci, Filippo, Kraus, Daniela, Roth, Oliver

论文摘要

在本文中,我们建立了(无限)Schwarz-pick引理的几个不变的边界版本,用于单位磁盘上的共形假体,以及在$ \ Mathbb c^n $ burns-krantz-krantz schwarz lemma的精神上,在$ \ mathbb c^n $中强烈凸出域的全体形态自我图。首先,我们专注于单位磁盘的情况,并证明具有可变曲率的保形假测量法的一般边界刚度定理。在最简单的情况下,该结果已经包括Schwarz-Pick,Ahlfors-Schwarz和Nehari-Schwarz的诱饵的新型边界版本。该证明是基于新的Harnack型不平等以及保形假体的边界HOPF引理,该伪假体延伸了Golusin,Heins,Beardon,Minda等的早期内部刚性结果。其次,我们证明了共形伪序列序列的类似刚度定理,即使在内部情况下也是新的。例如,获得了AHLFORS的强烈诱饵的第一个顺序版本。作为一种辅助工具,我们建立了一个关于保存共形假体序列零的hurwitz型结果。第三,我们将一维顺序边界刚性以及从几个复杂变量的各种技术以及各种技术应用于$ \ Mathbb c^n $ in $ n> 1 $中的schwarz-pick-pick Lemma的边界版本。

In this paper we establish several invariant boundary versions of the (infinitesimal) Schwarz-Pick lemma for conformal pseudometrics on the unit disk and for holomorphic selfmaps of strongly convex domains in $\mathbb C^N$ in the spirit of the boundary Schwarz lemma of Burns-Krantz. Firstly, we focus on the case of the unit disk and prove a general boundary rigidity theorem for conformal pseudometrics with variable curvature. In its simplest cases this result already includes new types of boundary versions of the lemmas of Schwarz-Pick, Ahlfors-Schwarz and Nehari-Schwarz. The proof is based on a new Harnack-type inequality as well as a boundary Hopf lemma for conformal pseudometrics which extend earlier interior rigidity results of Golusin, Heins, Beardon, Minda and others. Secondly, we prove similar rigidity theorems for sequences of conformal pseudometrics, which even in the interior case appear to be new. For instance, a first sequential version of the strong form of Ahlfors' lemma is obtained. As an auxiliary tool we establish a Hurwitz-type result about preservation of zeros of sequences of conformal pseudometrics. Thirdly, we apply the one-dimensional sequential boundary rigidity results together with a variety of techniques from several complex variables to prove a boundary version of the Schwarz-Pick lemma for holomorphic maps of strongly convex domains in $\mathbb C^N$ for $N>1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源