论文标题

重新设计任意多摄像机系统的大满贯

Redesigning SLAM for Arbitrary Multi-Camera Systems

论文作者

Kuo, Juichung, Muglikar, Manasi, Zhang, Zichao, Scaramuzza, Davide

论文摘要

在大满贯系统中添加更多相机可提高稳健性和准确性,但使视觉前端的设计变得复杂。因此,文献中的大多数系统都是针对特定相机配置量身定制的。在这项工作中,我们针对一个适用于任意多摄像机设置的自适应大满贯系统。为此,我们重新审视了视觉大满贯中几个常见的构建块。特别是,我们提出了一种自适应初始化方案,一种传感器 - 敏捷,信息理论键盘选择算法和基于可扩展的体素的映射。这些技术对实际的相机设置几乎没有假设,而不是理论上扎根的方法而不是启发式方法。我们通过这些修饰调整了最先进的视觉惯性渗透测度,实验结果表明,修改后的管道可以适应广泛的相机设置(例如,一个实验中的2至6个摄像机),而无需传感器特定的修改或调整。

Adding more cameras to SLAM systems improves robustness and accuracy but complicates the design of the visual front-end significantly. Thus, most systems in the literature are tailored for specific camera configurations. In this work, we aim at an adaptive SLAM system that works for arbitrary multi-camera setups. To this end, we revisit several common building blocks in visual SLAM. In particular, we propose an adaptive initialization scheme, a sensor-agnostic, information-theoretic keyframe selection algorithm, and a scalable voxel-based map. These techniques make little assumption about the actual camera setups and prefer theoretically grounded methods over heuristics. We adapt a state-of-the-art visual-inertial odometry with these modifications, and experimental results show that the modified pipeline can adapt to a wide range of camera setups (e.g., 2 to 6 cameras in one experiment) without the need of sensor-specific modifications or tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源