论文标题

时间交互网络中的流量计算

Flow Computation in Temporal Interaction Networks

论文作者

Kosyfaki, Chrysanthi, Mamoulis, Nikos, Pitoura, Evaggelia, Tsaparas, Panayiotis

论文摘要

时间互动网络捕获了沿时间表的实体之间活动的历史。在每次交互时,一定数量的数据(金钱,信息,KBYTE等)从网络的一个顶点流到另一个顶点。基于流的分析可以揭示重要信息。例如,财务智能单位(FIUS)有兴趣在汇款大量流量的交易网络中找到子图。在本文中,我们在交互网络或其子图中介绍了流量计算问题。我们提出并研究了两种流动计算模型,一种基于贪婪的流动转移假设,另一种是找到最大可能的流动。我们表明,通过单个相互作用的时间顺序,可以轻松解决贪婪的流量计算问题。对于更严重的最大流量问题,我们提出了图形预录和简化方法,这些方法可以大大降低其在实践中的复杂性。作为流量计算的应用,我们制定并解决了流模式搜索的问题,在给定图模式的情况下,目的是在大型交互网络中找到其实例及其流动。我们使用真实数据集评估我们的算法。结果表明,本文提出的技术可以大大降低流量计算和模式枚举的成本。

Temporal interaction networks capture the history of activities between entities along a timeline. At each interaction, some quantity of data (money, information, kbytes, etc.) flows from one vertex of the network to another. Flow-based analysis can reveal important information. For instance, financial intelligent units (FIUs) are interested in finding subgraphs in transactions networks with significant flow of money transfers. In this paper, we introduce the flow computation problem in an interaction network or a subgraph thereof. We propose and study two models of flow computation, one based on a greedy flow transfer assumption and one that finds the maximum possible flow. We show that the greedy flow computation problem can be easily solved by a single scan of the interactions in time order. For the harder maximum flow problem, we propose graph precomputation and simplification approaches that can greatly reduce its complexity in practice. As an application of flow computation, we formulate and solve the problem of flow pattern search, where, given a graph pattern, the objective is to find its instances and their flows in a large interaction network. We evaluate our algorithms using real datasets. The results show that the techniques proposed in this paper can greatly reduce the cost of flow computation and pattern enumeration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源