论文标题

半度性:深度半监督膝关节骨关节炎的严重性分级

Semixup: In- and Out-of-Manifold Regularization for Deep Semi-Supervised Knee Osteoarthritis Severity Grading from Plain Radiographs

论文作者

Nguyen, Huy Hoang, Saarakkala, Simo, Blaschko, Matthew, Tiulpin, Aleksei

论文摘要

膝盖骨关节炎(OA)是世界上最高的残疾因素之一。这种肌肉骨骼疾病是根据临床症状评估的,通常通过射线照相评估得到证实。放射科医生进行的这种视觉评估需要经验,并且遭受中等至高观察者的变异性。最近的文献表明,深度学习方法可以根据金标准Kellgren-Lawence(KL)分级系统可靠地进行OA严重性评估。但是,这些方法需要大量的标记数据,这些数据是昂贵的。在这项研究中,我们提出了Semixup算法,该算法是一种半监督学习(SSL)的方法来利用未标记的数据。 Semixup依赖于使用内部和过度样品的一致性正则化,以及插值一致性。在独立的测试集中,我们的方法在大多数情况下大大优于其他最先进的SSL方法。最后,与经过良好调整的完全监督基线相比,测试集的均衡准确性(BA)为70.9美元\ pm0.8%$,Semixup具有可比性的性能 - BA $ 71 \ pm0.8%$ $(P = 0.368),同时需要标记较小的标签数据少于$ 6 $乘以$ 6 $。这些结果表明,我们提出的SSL方法允许使用可在研究设置外的数据集构建全自动OA严重性评估工具。

Knee osteoarthritis (OA) is one of the highest disability factors in the world. This musculoskeletal disorder is assessed from clinical symptoms, and typically confirmed via radiographic assessment. This visual assessment done by a radiologist requires experience, and suffers from moderate to high inter-observer variability. The recent literature has shown that deep learning methods can reliably perform the OA severity assessment according to the gold standard Kellgren-Lawrence (KL) grading system. However, these methods require large amounts of labeled data, which are costly to obtain. In this study, we propose the Semixup algorithm, a semi-supervised learning (SSL) approach to leverage unlabeled data. Semixup relies on consistency regularization using in- and out-of-manifold samples, together with interpolated consistency. On an independent test set, our method significantly outperformed other state-of-the-art SSL methods in most cases. Finally, when compared to a well-tuned fully supervised baseline that yielded a balanced accuracy (BA) of $70.9\pm0.8%$ on the test set, Semixup had comparable performance -- BA of $71\pm0.8%$ $(p=0.368)$ while requiring $6$ times less labeled data. These results show that our proposed SSL method allows building fully automatic OA severity assessment tools with datasets that are available outside research settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源