论文标题

具有抛物线潜力的经典和非局部和非局部毛的新动力学

New dynamics of the classical and nonlocal Gross-Pitaevskii equation with a parabolic potential

论文作者

Liu, Shi-min, Wu, Hua, Zhang, Da-jun

论文摘要

具有抛物线潜力和增益项的经典和非局部和非局部毛pitaevskii(GP)方程的溶液是通过使用二阶非镜头Ablowitz-kaup-newell-Segur-segur-segur-segur系统和Double Wronskians还原技术得出的。经典GP方程的解决方案显示出典型的时空局部特征。通过数学分析和插图发现了一个有趣的动态,即带有振荡波的孤子。还说明了某些非局部病例的解决方案。

Solutions of the classical and nonlocal Gross-Pitaevskii (GP) equation with a parabolic potential and a gain term are derived by using a second order nonisospectral Ablowitz-Kaup-Newell-Segur system and reduction technique of double Wronskians. Solutions of the classical GP equation show typical space-time localized characteristics. An interesting dynamics, solitons carrying an oscillating wave, are found with mathematical analysis and illustrations. Solutions of some nonlocal cases are also illustrated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源