论文标题
美元
${\cal N}=1$ conformal duals of gauged $E_n$ MN models
论文作者
论文摘要
我们建议三个新的$ {\ cal n} = 1 $共形双对。首先,我们认为$ {\ cal n} = 2 $ $ $ e_6 $ minahan-nemeschansky(Mn)理论,具有$ usp(4)$ e_6 $ subgroup of $ e_6 $全球对称性,并用$ {\ cal n} = 1 $ vector倍增和某些额外的倍数conforcties use usecties us conformant of usecties Quiver量规理论。其次,我们认为$ {\ cal n} = 2 $ $ e_7 $ mn理论,带有$ su(2)$ $ e_7 $ e_7 $全球对称性的子群,与$ {\ cal n} = 1 $ vector倍数$ {\ cal n} = 1 $ vector倍增和某些其他chiral倍增属于一定的cusp $ cal of colformal $ cal of coldormal of a golformal of a goldormal cal of a foldormal cal of a goldormal of a goldormal cal of a foldormal of a goldormal cal $ USP(4)$量规理论。最后,我们声称$ {\ cal n} = 2 $ $ $ e_8 $ mn理论,带有$ usp(4)$ $ e_8 $ e_8 $ subgroup全球对称性的子群,与$ {\ cal n} = 1 $ vector多重倍数$ {\ cal n} = 1 $ vector uspertept us $ cusp of $ $ caur $ cat an共形规论。我们使用多种非扰动技术(包括异常和索引计算)来争辩二元性。双重性可以被视为$ {\ cal n} = 1 $类似物的$ {\ cal n} = 2 $ argyres-seiberg/argyres-seiberg/argyres-wittig duals $ e_n $ mn型号。我们还简要评论了$ {\ cal n} = 1 $版本的超符号索引的Schur限制。
We suggest three new ${\cal N}=1$ conformal dual pairs. First, we argue that the ${\cal N}=2$ $E_6$ Minahan-Nemeschansky (MN) theory with a $USp(4)$ subgroup of the $E_6$ global symmetry conformally gauged with an ${\cal N}=1$ vector multiplet and certain additional chiral multiplet matter resides at some cusp of the conformal manifold of an $SU(2)^5$ quiver gauge theory. Second, we argue that the ${\cal N}=2$ $E_7$ MN theory with an $SU(2)$ subgroup of the $E_7$ global symmetry conformally gauged with an ${\cal N}=1$ vector multiplet and certain additional chiral multiplet matter resides at some cusp of the conformal manifold of a conformal ${\cal N}=1$ $USp(4)$ gauge theory. Finally, we claim that the ${\cal N}=2$ $E_8$ MN theory with a $USp(4)$ subgroup of the $E_8$ global symmetry conformally gauged with an ${\cal N}=1$ vector multiplet and certain additional chiral multiplet matter resides at some cusp of the conformal manifold of an ${\cal N}=1$ $Spin(7)$ conformal gauge theory. We argue for the dualities using a variety of non-perturbative techniques including anomaly and index computations. The dualities can be viewed as ${\cal N}=1$ analogues of ${\cal N}=2$ Argyres-Seiberg/Argyres-Wittig duals of the $E_n$ MN models. We also briefly comment on an ${\cal N}=1$ version of the Schur limit of the superconformal index.