论文标题
具有超小模式的声学钻石谐振器
Acoustic diamond resonators with ultra-small mode volumes
论文作者
论文摘要
量子听觉动力学(QAD)是一个快速发展的研究领域,提供了在新频率范围内实现和研究宏观量子力学系统的可能性,并实施了换能器和混合量子设备的新型记忆。在这里,我们为在GHz频率上运行的多功能钻石QAD腔提供了一种新颖的设计,显示有效模式卷约为$ 10^{-4}λ^3 $。我们的语音晶体波导腔实现了光学闪电效应的非共鸣类似物,以将声学模式的能量定位在深层波长的体积中。我们证明,这种限制可以很容易地增强与嵌入式氮相(NV)中心的轨道 - 应变相互作用,以使用单个NV实现朝向基础状态的声学振动的有效共振冷却。该体系结构可以很容易地转换为具有一维音调晶体的多个空腔的设置,而潜在的非谐振定位机制将为进一步增强Phoxonic Crystal腔中的光声耦合铺平道路。
Quantum acoustodynamics (QAD) is a rapidly developing field of research, offering possibilities to realize and study macroscopic quantum-mechanical systems in a new range of frequencies, and implement transducers and new types of memories for hybrid quantum devices. Here we propose a novel design for a versatile diamond QAD cavity operating at GHz frequencies, exhibiting effective mode volumes of about $10^{-4}λ^3$. Our phononic crystal waveguide cavity implements a non-resonant analogue of the optical lightning-rod effect to localize the energy of an acoustic mode into a deeply-subwavelength volume. We demonstrate that this confinement can readily enhance the orbit-strain interaction with embedded nitrogen-vacancy (NV) centres towards the high-cooperativity regime, and enable efficient resonant cooling of the acoustic vibrations towards the ground state using a single NV. This architecture can be readily translated towards setup with multiple cavities in one- or two-dimensional phononic crystals, and the underlying non-resonant localization mechanism will pave the way to further enhance optoacoustic coupling in phoxonic crystal cavities.