论文标题

使用合并的机器学习模型评估天文图像

Assessment of astronomical images using combined machine learning models

论文作者

Teimoorinia, Hossen, Kavelaars, J. J., Gwyn, Stephen, Durand, Daniel, Rolston, Kennedy, Ouellette, Alexander

论文摘要

我们提出了一种基于两个组件的机器学习(ML)方法,用于通过对这些图像中代表源的图像和图像像素值中检测到的源来通过数据质量进行分类的天文图像。使用聚类算法的第一个组件会创建适当且少量的图像像素来确定观察质量。代表性图像(和相关表)比原始图像小约800倍,大大减少了训练我们的算法所需的时间。保留图像中的有用信息,使其可以分类为不同的类别,但是减少了所需的存储。第二个组件是一个深神经网络模型,对代表性图像进行了分类。使用基于地面的望远镜成像数据,我们证明该方法可用于将“可用”图像与为科学项目带来一些问题的“可用”图像(例如在次优条件下拍摄的图像。与我们仅使用图像的像素信息相比,该方法使用两个不同的数据集作为深层模型的输入,并提供更好的性能。该方法可以在使用深层模型检查大型且复杂的数据集的情况下使用。与通过手动图像检查生成的分类相比,我们的自动分类方法达到了97%的一致性。我们将我们的方法与传统结果进行比较,并表明该方法将结果提高了约10%,并且还提出了更全面的结果。

We present a two-component Machine Learning (ML) based approach for classifying astronomical images by data-quality via an examination of sources detected in the images and image pixel values from representative sources within those images. The first component, which uses a clustering algorithm, creates a proper and small fraction of the image pixels to determine the quality of the observation. The representative images (and associated tables) are ~800 times smaller than the original images, significantly reducing the time required to train our algorithm. The useful information in the images is preserved, permitting them to be classified in different categories, but the required storage is reduced. The second component, which is a deep neural network model, classifies the representative images. Using ground-based telescope imaging data, we demonstrate that the method can be used to separate 'usable' images from those that present some problems for scientific projects -- such as images that were taken in sub-optimal conditions. This method uses two different data sets as input to a deep model and provides better performance than if we only used the images' pixel information. The method may be used in cases where large and complex data sets should be examined using deep models. Our automated classification approach achieves 97% agreement when compared to classification generated via manual image inspection. We compare our method with traditional results and show that the method improves the results by about 10%, and also presents more comprehensive outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源