论文标题

在99大赫克里斯大约的极地碎片盘的形成

Formation of the polar debris disc around 99 Herculis

论文作者

Smallwood, Jeremy L., Franchini, Alessia, Chen, Cheng, Becerril, Eric, Lubow, Stephen H., Yang, Chao-Chin, Martin, Rebecca G.

论文摘要

我们研究了观察到的几乎极性对齐(垂直于二元轨道平面)围绕怪异轨道二进制99赫克利斯的碎屑环的形成机制。最初倾斜的非极性碎屑环或圆盘不会保持平坦,并且由于改变其平坦结构的差分淋巴结进液的影响,不会演变为极性构型。但是,由于保持盘平固定的压力力以及粘性耗散的结果,偏心二进制的嵌入式气盘可能会演变为极性构型,从而使椎间盘增加其倾斜度。一旦气盘散布,碎屑盘就处于极地对齐状态,在该状态下几乎没有动力。我们使用三维流体动力学模拟,线性理论和粒子动力学来研究未对准的环形气盘的演变,并探索初始盘倾斜,质量和大小的效果。我们发现,对于广泛的参数空间,极性对齐时间尺度比气盘的寿命短。使用观察到的3度比对水平。从极地开始,我们对气盘的质量限制了大约0.014 m_sun的质量。我们得出的结论是,大约99左右的极性碎片盘可以解释是最初带有嵌入固体的中度倾斜的气盘的结果。这样的光盘可以为形成极地行星提供一个环境。

We investigate the formation mechanism for the observed nearly polar aligned (perpendicular to the binary orbital plane) debris ring around the eccentric orbit binary 99 Herculis. An initially inclined nonpolar debris ring or disc will not remain flat and will not evolve to a polar configuration, due to the effects of differential nodal precession that alter its flat structure. However, a gas disc with embedded well coupled solids around the eccentric binary may evolve to a polar configuration as a result of pressure forces that maintain the disc flatness and as a result of viscous dissipation that allows the disc to increase its tilt. Once the gas disc disperses, the debris disc is in a polar aligned state in which there is little precession. We use three-dimensional hydrodynamical simulations, linear theory, and particle dynamics to study the evolution of a misaligned circumbinary gas disc and explore the effects of the initial disc tilt, mass, and size. We find that for a wide range of parameter space, the polar alignment timescale is shorter than the lifetime of the gas disc. Using the observed level of alignment of 3 deg. from polar, we place an upper limit on the mass of the gas disc of about 0.014 M_sun at the time of gas dispersal. We conclude that the polar debris disc around 99 Her can be explained as the result of an initially moderately inclined gas disc with embedded solids. Such a disc may provide an environment for the formation of polar planets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源