论文标题
形态传递的层次分离模仿
Hierarchically Decoupled Imitation for Morphological Transfer
论文作者
论文摘要
在复杂的高维剂上学习长期行为是机器人学习中的一个基本问题。对于此类任务,我们认为从形态学上更简单的药物中传输学习的信息可以大大提高更复杂的样本效率。为此,我们提出将政策分层分为两个部分:独立学习的低级政策和可转让的高级政策。为了补救由于形态不匹配而导致的不良转移表现,我们贡献了两个关键思想。首先,我们表明,激励复杂的代理的低级模仿更简单的代理的低水平可以显着改善零射击的高级传输。其次,我们表明,对高水平的KL登记培训可以稳定学习并防止模式崩溃。最后,在公开发布的导航和操纵环境中,我们证明了层次转移在跨形态的远程任务上的适用性。我们的代码和视频可以在https://sites.google.com/berkeley.edu/morphology-transfer上找到。
Learning long-range behaviors on complex high-dimensional agents is a fundamental problem in robot learning. For such tasks, we argue that transferring learned information from a morphologically simpler agent can massively improve the sample efficiency of a more complex one. To this end, we propose a hierarchical decoupling of policies into two parts: an independently learned low-level policy and a transferable high-level policy. To remedy poor transfer performance due to mismatch in morphologies, we contribute two key ideas. First, we show that incentivizing a complex agent's low-level to imitate a simpler agent's low-level significantly improves zero-shot high-level transfer. Second, we show that KL-regularized training of the high level stabilizes learning and prevents mode-collapse. Finally, on a suite of publicly released navigation and manipulation environments, we demonstrate the applicability of hierarchical transfer on long-range tasks across morphologies. Our code and videos can be found at https://sites.google.com/berkeley.edu/morphology-transfer.