论文标题
线绑爆发模拟中的能量和螺旋通量
Energy and helicity fluxes in line-tied eruptive simulations
论文作者
论文摘要
基于磁场分解为电势和非电位成分,磁能和相对螺旋性也可以分解为两个数量:电势和自由能,以及音量线程和电流携带的螺旋。在这项研究中,我们在一组太阳样喷发的参数3D磁水动力学(MHD)模拟中对其行为进行了耦合分析。我们介绍了电阻性MHD中能量和螺旋的时变成分的一般公式。我们用特定的量规来计算它们,并比较了它们在数值模拟中的行为,这些行为彼此不同,它们的施加边界驾驶运动。因此,我们研究了不同活性区域流动对能量和螺旋相关量的发展的影响。尽管其整体行为的一般相似之处,但螺旋和能量表现出不同的演变,这些演变无法在独特的框架中解释。尽管所有模拟中的能量通量都是相似的,但控制螺旋的演变的物理机制与一个模拟明显不同:根据模拟,可以通过边界通量或螺旋传递来控制体积线程螺旋的演变,具体取决于模拟。在所有模拟中,爆发发生在电流携带的螺旋与总螺旋度之比的相同值。但是,我们的研究强调,可以以不同的方式达到该阈值,而不同的光电流则以不同的螺旋相关过程主导。这意味着爆发前动力学的细节不会影响喷发性螺旋相关的阈值。然而,在改变到达喷发开始所需的时间时,螺旋升华动力学可能或多或少有效。
Based on a decomposition of the magnetic field into potential and nonpotential components, magnetic energy and relative helicity can both also be decomposed into two quantities: potential and free energies, and volume-threading and current-carrying helicities. In this study, we perform a coupled analysis of their behaviors in a set of parametric 3D magnetohydrodynamic (MHD) simulations of solar-like eruptions. We present the general formulations for the time-varying components of energy and helicity in resistive MHD. We calculated them numerically with a specific gauge, and compared their behaviors in the numerical simulations, which differ from one another by their imposed boundary-driving motions. Thus, we investigated the impact of different active regions surface flows on the development of the energy and helicity-related quantities. Despite general similarities in their overall behaviors, helicities and energies display different evolutions that cannot be explained in a unique framework. While the energy fluxes are similar in all simulations, the physical mechanisms that govern the evolution of the helicities are markedly distinct from one simulation to another: the evolution of volume-threading helicity can be governed by boundary fluxes or helicity transfer, depending on the simulation. The eruption takes place for the same value of the ratio of the current-carrying helicity to the total helicity in all simulations. However, our study highlights that this threshold can be reached in different ways, with different helicity-related processes dominating for different photospheric flows. This means that the details of the pre-eruptive dynamics do not influence the eruption-onset helicity-related threshold. Nevertheless, the helicity-flux dynamics may be more or less efficient in changing the time required to reach the onset of the eruption.