论文标题

等线性压缩的Euler方程中COUETTE附近的2D剪切流的线性稳定性分析

Linear stability analysis for 2D shear flows near Couette in the isentropic Compressible Euler equations

论文作者

Antonelli, Paolo, Dolce, Michele, Marcati, Pierangelo

论文摘要

在本文中,我们研究了2D等粒子可压缩的欧拉方程的线性稳定性特性,该方程在剪切流周围是由单调曲线给出的剪切流,靠近coutte流,靠近恒定密度的couette流,在域$ \ mathbb {t} t} \ times times \ mathbb {r} $。我们首先要直接研究Couette剪切流,在该流动流中,我们表征了流体可压缩部分的线性生长,同时证明了不可压缩部分的时间衰减(速度较慢的速率降低了粘固阻尼)。然后,我们将分析扩展到COUETTE附近的单调剪切流,在那里我们能够在流体的可压缩部分中给出上限,超线性。不可压缩的部分享有类似于Couette Case类似的无粘性阻尼属性。在纯的库特情况下,我们利用了额外的保护定律的存在(连接了涡旋和移动框架上的密度),以减少系统自由度的数量。然后,通过使用加权能量估计值进行结果。不幸的是,在一般情况下,该保护法不再成立。因此,我们为整个系统定义了合适的加权能量功能,该功能可用于估计速度的无旋转成分,但不能在螺线管成分上提供急剧的界限。但是,即使没有上述附加的保护定律,我们仍然能够显示出一个功能关系的存在,该关系使我们能够在移动框架上以某种方式从密度中恢复涡度。通过将加权能量估计与功能关系相结合,我们还为速度的螺线管成分恢复了无粘性阻尼。

In this paper, we investigate linear stability properties of the 2D isentropic compressible Euler equations linearized around a shear flow given by a monotone profile, close to the Couette flow, with constant density, in the domain $\mathbb{T}\times \mathbb{R}$. We begin by directly investigating the Couette shear flow, where we characterize the linear growth of the compressible part of the fluid while proving time decay for the incompressible part (inviscid damping with slower rates). Then we extend the analysis to monotone shear flows near Couette, where we are able to give an upper bound, superlinear in time, for the compressible part of the fluid. The incompressible part enjoys an inviscid damping property, analogous to the Couette case. In the pure Couette case, we exploit the presence of an additional conservation law (which connects the vorticity and the density on the moving frame) in order to reduce the number of degrees of freedom of the system. The result then follows by using weighted energy estimates. In the general case, unfortunately, this conservation law no longer holds. Therefore we define a suitable weighted energy functional for the whole system, which can be used to estimate the irrotational component of the velocity but does not provide sharp bounds on the solenoidal component. However, even in the absence of the aforementioned additional conservation law, we are still able to show the existence of a functional relation which allows us to recover somehow the vorticity from the density, on the moving frame. By combining the weighted energy estimates with the functional relation we also recover the inviscid damping for the solenoidal component of the velocity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源