论文标题
非均匀随机步行的切口
Cutpoints of non-homogeneous random walks
论文作者
论文摘要
我们提供的条件下,在半线上接近临界的随机过程具有无限或有限的许多切口,从而将现有结果推广到最近的邻居随机步行中,以满足适当的条件增量力矩条件的有界增量的适应过程。我们将其中一个结果之一推断出$ \ Mathbb {r}^d $,$ d \ geq 2 $中的一类瞬态零饮用器马尔可夫链具有无限的许多分离Annuli,从而将先前的结果推广到空间同质的随机步行中。
We give conditions under which near-critical stochastic processes on the half-line have infinitely many or finitely many cutpoints, generalizing existing results on nearest-neighbour random walks to adapted processes with bounded increments satisfying appropriate conditional increment moments conditions. We apply one of these results to deduce that a class of transient zero-drift Markov chains in $\mathbb{R}^d$, $d \geq 2$, possess infinitely many separating annuli, generalizing previous results on spatially homogeneous random walks.