论文标题

用于对话域适应的混合生成式变压器

Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation

论文作者

Shalyminov, Igor, Sordoni, Alessandro, Atkinson, Adam, Schulz, Hannes

论文摘要

域的适应性最近已成为对话系统研究中的关键问题。深度学习虽然是建模此类系统的首选技术,但在给定大规模培训数据的情况下,最有效。但是,在实际情况下,每个新领域都无法获得此类资源,因此可以将一些对话示例训练的能力视为必不可少的。在大型数据源上进行预培训并适应目标数据已成为深度学习框架内几乎没有问题的标准方法。在本文中,我们介绍了DSTC8快速域适应任务的获胜条目,DSTC8是一种基于GPT-2微调的混合生成重新校正模型,以对多域Metalwoz数据集进行了微调。我们的模型在响应生成方面的强大而多样化,使用检索逻辑作为后备,是人类评估中的Metalwoz(比第二名系统提高> 4%),并在适应未看到的多Woz数据集的适应中获得了竞争性的概括性。

Domain adaptation has recently become a key problem in dialogue systems research. Deep learning, while being the preferred technique for modeling such systems, works best given massive training data. However, in the real-world scenario, such resources aren't available for every new domain, so the ability to train with a few dialogue examples can be considered essential. Pre-training on large data sources and adapting to the target data has become the standard method for few-shot problems within the deep learning framework. In this paper, we present the winning entry at the fast domain adaptation task of DSTC8, a hybrid generative-retrieval model based on GPT-2 fine-tuned to the multi-domain MetaLWOz dataset. Robust and diverse in response generation, our model uses retrieval logic as a fallback, being SoTA on MetaLWOz in human evaluation (>4% improvement over the 2nd place system) and attaining competitive generalization performance in adaptation to the unseen MultiWOZ dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源