论文标题
用于扰动双曲线抛物面的傅立叶定理:多项式分配
A Fourier restriction theorem for a perturbed hyperbolic paraboloid: polynomial partitioning
论文作者
论文摘要
我们认为在$ \ bbb r^3 $中具有负曲率的表面,这是鞍座的立方扰动。对于此表面,我们证明了一种新的限制定理,类似于L. Guth在2016年证明的抛物线定理的定理。这种特定的扰动事实证明,这对了解更普遍的扰动类别也至关重要。
We consider a surface with negative curvature in $\Bbb R^3$ which is a cubic perturbation of the saddle. For this surface, we prove a new restriction theorem, analogous to the theorem for paraboloids proved by L. Guth in 2016. This specific perturbation has turned out to be of fundamental importance also to the understanding of more general classes of perturbations.