论文标题

Omni-Paptive Grasp学习的可重新配置设计

Reconfigurable Design for Omni-adaptive Grasp Learning

论文作者

Wan, Fang, Wang, Haokun, Wu, Jiyuan, Liu, Yujia, Ge, Sheng, Song, Chaoyang

论文摘要

机器人抓手的工程设计提供了一个充足的设计空间,以优化可靠的抓握。在本文中,我们使用具有Omni方向适应性的新型软手指结构来采用机器人抓紧器的可重构设计,该结构通过重新安排这些手指来产生大量可能的握把配置。这些具有全面自适应的手指的可重新配置设计使我们能够系统地研究手指的最佳布置,以抓住强大的握力。此外,我们采用一种基于学习的方法作为基准测试每种设计配置有效性的基准。结果,我们发现3指和4指的径向构型是最有效的构型,它在可见的对象和从YCB数据集中选择的新对象上获得了平均96 \%的掌握率。我们还讨论了摩擦表面对手指的影响,以改善握力的鲁棒性。

The engineering design of robotic grippers presents an ample design space for optimization towards robust grasping. In this paper, we adopt the reconfigurable design of the robotic gripper using a novel soft finger structure with omni-directional adaptation, which generates a large number of possible gripper configurations by rearranging these fingers. Such reconfigurable design with these omni-adaptive fingers enables us to systematically investigate the optimal arrangement of the fingers towards robust grasping. Furthermore, we adopt a learning-based method as the baseline to benchmark the effectiveness of each design configuration. As a result, we found that a 3-finger and 4-finger radial configuration is the most effective one achieving an average 96\% grasp success rate on seen and novel objects selected from the YCB dataset. We also discussed the influence of the frictional surface on the finger to improve the grasp robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源