论文标题

代数$ k $的“基本定理” - 强烈$ \ mathbb {z} $ - 分级戒指

The "fundamental theorem" for the algebraic $K$-theory of strongly $\mathbb{Z}$-graded rings

论文作者

Huettemann, Thomas

论文摘要

代数$ k $的“基本定理”表达了laurent多项式环$ l [t,t,t^{ - 1} $的$ k $ groups,作为$ k $ -groups $ l $的两个副本的直接总和(一份副本,一份副本),以及某些$ l $ l $ l $ l $。这里显示,此结果的修改版本大概是$ \ mathbb {z} $ - 分级环;分裂不是$ l $的代数$ k $ - 组,涉及与来自分级结构的$ l $模型类别相关的群体。 (在经典案例中,这些动作是微不足道的)。 NIL基团通过减少的$ K $ - 同型nilpotent扭曲的内态理论,并建立了Mayer-Vietoris的类似物和定位序列。

The "fundamental theorem" for algebraic $K$-theory expresses the $K$-groups of a Laurent polynomial ring $L[t,t^{-1}]$ as a direct sum of two copies of the $K$-groups of $L$ (with a degree shift in one copy), and certain "nil" groups of $L$. It is shown here that a modified version of this result generalises to strongly $\mathbb{Z}$-graded rings; rather than the algebraic $K$-groups of $L$, the splitting involves groups related to the shift actions on the category of $L$-modules coming from the graded structure. (These action are trivial in the classical case). The nil groups are identified with the reduced $K$-theory of homotopy nilpotent twisted endomorphisms, and analogues of Mayer-Vietoris and localisation sequences are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源