论文标题

在可分解且可简化的整数矩阵上

On decomposable and reducible integer matrices

论文作者

Marijuán, Carlos, Ojeda, Ignacio, Vigneron-Tenorio, Alberto

论文摘要

我们提出了必要和足够的条件,使整数矩阵可以根据其赫米特正常形式进行分解。具体而言,对于无零列的每个最大行等级的整数矩阵,我们将可降低性的对称整体矩阵关联,可以通过基本线性代数来确定,并完全确定第一个矩阵。

We propose necessary and sufficient conditions for an integer matrix to be decomposable in terms of its Hermite normal form. Specifically, to each integer matrix of maximal row rank without columns of zeros, we associate a symmetric whole matrix whose reducibility can be determined by elementary Linear Algebra, and which completely determines the decomposibility of the first one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源