论文标题

通过平滑进行课程

Curriculum By Smoothing

论文作者

Sinha, Samarth, Garg, Animesh, Larochelle, Hugo

论文摘要

卷积神经网络(CNN)在计算机视觉任务(例如图像分类,检测和细分)中表现出令人印象深刻的性能。此外,生成对抗网络(GAN)的最新工作通过逐步增加学习任务的难度来强调学习的重要性[26]。当从头开始学习网络时,由于噪声可能会损害训练,因此在训练的早期阶段,网络中传播的信息可能包含失真伪像。在本文中,我们提出了一种优雅的基于课程的方案,该方案使用抗氧化或低通滤波器平滑CNN的特征嵌入。我们建议通过控制训练中CNN中传播的高频信息的量来增强CNN的训练,并通过将CNN特征图的输出与高斯内核进行卷积。通过减少高斯内核的差异,我们逐渐增加网络中可用的高频信息的量。随着特征图中的信息量在培训期间的增加,网络能够逐步学习更好的数据表示。我们提出的增强培训计划可显着提高CNN在各种视觉任务上的性能,而无需添加其他可训练的参数或辅助正则化目标。通过在四个不同的任务中的CNN体​​系结构中的经验性提高来证明我们方法的一般性:转移学习,交叉任务转移学习和生成模型。

Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation. Moreover, recent work in Generative Adversarial Networks (GANs) has highlighted the importance of learning by progressively increasing the difficulty of a learning task [26]. When learning a network from scratch, the information propagated within the network during the earlier stages of training can contain distortion artifacts due to noise which can be detrimental to training. In this paper, we propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters. We propose to augment the train-ing of CNNs by controlling the amount of high frequency information propagated within the CNNs as training progresses, by convolving the output of a CNN feature map of each layer with a Gaussian kernel. By decreasing the variance of the Gaussian kernel, we gradually increase the amount of high-frequency information available within the network for inference. As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data. Our proposed augmented training scheme significantly improves the performance of CNNs on various vision tasks without either adding additional trainable parameters or an auxiliary regularization objective. The generality of our method is demonstrated through empirical performance gains in CNN architectures across four different tasks: transfer learning, cross-task transfer learning, and generative models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源