论文标题
转移学习语言感知语言理解
Transfer Learning for Context-Aware Spoken Language Understanding
论文作者
论文摘要
口语理解(SLU)是面向任务对话系统的关键组成部分。 SLU将自然语言用户的话语解析为语义框架。先前的工作表明,合并上下文信息可显着改善SLU性能在多转对话中。但是,为目标领域收集大规模的人类标记的多转向对话语料库是复杂且昂贵的。为了减少对收集和注释工作的依赖,我们提出了一个编码语言变压器(CELT)模型的上下文,以促进为SLU开发各种上下文信息。我们探索不同的转移学习方法,以减少对数据收集和注释的依赖。除了使用大规模通用语料库(例如Wikipedia)使用大规模的通用语料库的无监督预训练外,我们还探索了无监督和有监督的自适应培训方法,用于转移学习,以使其他内域内和分类外对话公司受益。实验结果表明,提出的转移学习方法的拟议模型在两个大规模的单转向对话基准和一个大规模的多转向对话基准上,对SLU性能的最先进模型取得了重大改进。
Spoken language understanding (SLU) is a key component of task-oriented dialogue systems. SLU parses natural language user utterances into semantic frames. Previous work has shown that incorporating context information significantly improves SLU performance for multi-turn dialogues. However, collecting a large-scale human-labeled multi-turn dialogue corpus for the target domains is complex and costly. To reduce dependency on the collection and annotation effort, we propose a Context Encoding Language Transformer (CELT) model facilitating exploiting various context information for SLU. We explore different transfer learning approaches to reduce dependency on data collection and annotation. In addition to unsupervised pre-training using large-scale general purpose unlabeled corpora, such as Wikipedia, we explore unsupervised and supervised adaptive training approaches for transfer learning to benefit from other in-domain and out-of-domain dialogue corpora. Experimental results demonstrate that the proposed model with the proposed transfer learning approaches achieves significant improvement on the SLU performance over state-of-the-art models on two large-scale single-turn dialogue benchmarks and one large-scale multi-turn dialogue benchmark.