论文标题
通过进化元学习迅速适应的腿机器人
Rapidly Adaptable Legged Robots via Evolutionary Meta-Learning
论文作者
论文摘要
学习适应能力的政策对于机器人在我们复杂而快速变化的世界中自动运作至关重要。在这项工作中,我们提出了一种新的元学习方法,该方法允许机器人快速适应动态变化。与依赖二阶梯度估计的基于梯度的元学习算法相反,我们引入了更耐降噪的批次攀岩山丘适应性操作员,并将其与基于进化策略的元学习相结合。我们的方法显着改善了对高噪声设置中动态变化的适应,这在机器人技术应用中很常见。我们验证了四足机器人的方法,该机器人学会走路的同时受到动态变化的影响。我们观察到,我们的方法显着优于先前的基于梯度的方法,从而使机器人能够根据不到3分钟的真实数据调整其策略以更改。
Learning adaptable policies is crucial for robots to operate autonomously in our complex and quickly changing world. In this work, we present a new meta-learning method that allows robots to quickly adapt to changes in dynamics. In contrast to gradient-based meta-learning algorithms that rely on second-order gradient estimation, we introduce a more noise-tolerant Batch Hill-Climbing adaptation operator and combine it with meta-learning based on evolutionary strategies. Our method significantly improves adaptation to changes in dynamics in high noise settings, which are common in robotics applications. We validate our approach on a quadruped robot that learns to walk while subject to changes in dynamics. We observe that our method significantly outperforms prior gradient-based approaches, enabling the robot to adapt its policy to changes based on less than 3 minutes of real data.