论文标题
使用GAN和3D多级底特的MRI超分辨率:较小,更快,更好
MRI Super-Resolution with GAN and 3D Multi-Level DenseNet: Smaller, Faster, and Better
论文作者
论文摘要
高分辨率(HR)磁共振成像(MRI)提供了详细的解剖信息,这对于临床应用中的诊断至关重要。但是,HR MRI通常以长时间的扫描时间,较小的空间覆盖范围和低信噪比(SNR)为代价。最近的研究表明,使用深度卷积神经网络(CNN),可以通过单像超级分辨率(SISR)方法从低分辨率(LR)输入中恢复HR通用图像。此外,以前的作品表明,深3D CNN可以使用学习的图像先验来生成高质量的SR MRI。但是,具有深层结构的3D CNN具有大量参数,并且计算昂贵。在本文中,我们提出了一种新颖的3D CNN体系结构,即一个多级连接的超分辨率网络(MDCSRN),该网络轻巧,快速,准确。我们还表明,借助生成对抗网络(GAN)指导的培训,MDCSRN-GAN提供了吸引人的尖锐SR图像,具有丰富的纹理细节,可与引用的HR图像高度比较。我们来自具有1,113个受试者的大型公共数据集实验的结果表明,这种新的体系结构在以质量和速度恢复4倍分辨率下降的图像方面优于其他流行的深度学习方法。
High-resolution (HR) magnetic resonance imaging (MRI) provides detailed anatomical information that is critical for diagnosis in the clinical application. However, HR MRI typically comes at the cost of long scan time, small spatial coverage, and low signal-to-noise ratio (SNR). Recent studies showed that with a deep convolutional neural network (CNN), HR generic images could be recovered from low-resolution (LR) inputs via single image super-resolution (SISR) approaches. Additionally, previous works have shown that a deep 3D CNN can generate high-quality SR MRIs by using learned image priors. However, 3D CNN with deep structures, have a large number of parameters and are computationally expensive. In this paper, we propose a novel 3D CNN architecture, namely a multi-level densely connected super-resolution network (mDCSRN), which is light-weight, fast and accurate. We also show that with the generative adversarial network (GAN)-guided training, the mDCSRN-GAN provides appealing sharp SR images with rich texture details that are highly comparable with the referenced HR images. Our results from experiments on a large public dataset with 1,113 subjects showed that this new architecture outperformed other popular deep learning methods in recovering 4x resolution-downgraded images in both quality and speed.