论文标题
学习碰撞:一种自适应安全 - 关键场景生成方法
Learning to Collide: An Adaptive Safety-Critical Scenarios Generating Method
论文作者
论文摘要
当在现实世界中应用自动驾驶算法时,长尾和罕见的事件问题变得至关重要。为了评估具有挑战性的设置中的系统,我们提出了一个生成框架,以创建用于评估特定任务算法的安全至关重要方案。我们首先用一系列自动回归构建块代表交通情况,并通过从这些块的联合分配中取样来产生不同的方案。然后,我们将生成模型训练为代理(或发电机),以研究评估给定驱动算法的风险分布参数。我们将任务算法视为一种环境(或歧视者),该环境会在产生风险的情况下向代理返回奖励。通过在模拟中的几种情况下进行的实验,我们证明了所提出的框架比网格搜索或人类设计方法更有效地生成安全关键方案。该方法的另一个优点是它对路由和参数的适应性。
Long-tail and rare event problems become crucial when autonomous driving algorithms are applied in the real world. For the purpose of evaluating systems in challenging settings, we propose a generative framework to create safety-critical scenarios for evaluating specific task algorithms. We first represent the traffic scenarios with a series of autoregressive building blocks and generate diverse scenarios by sampling from the joint distribution of these blocks. We then train the generative model as an agent (or a generator) to investigate the risky distribution parameters for a given driving algorithm being evaluated. We regard the task algorithm as an environment (or a discriminator) that returns a reward to the agent when a risky scenario is generated. Through the experiments conducted on several scenarios in the simulation, we demonstrate that the proposed framework generates safety-critical scenarios more efficiently than grid search or human design methods. Another advantage of this method is its adaptiveness to the routes and parameters.