论文标题

动态系统标识的对抗性生成的信息轨迹

Adversarial Generation of Informative Trajectories for Dynamics System Identification

论文作者

Jegorova, Marija, Smith, Joshua, Mistry, Michael, Hospedales, Timothy

论文摘要

动态系统识别方法通常在很大程度上依赖于基于进化和梯度的优化技术来产生最佳的激发轨迹,以确定机器人平台的物理参数。当前的优化技术倾向于生成单轨迹。这是昂贵的,对于更长的轨迹而言是棘手的,因此限制了它们的系统识别功效。我们建议通过使用多个较短的环状轨迹来解决此问题,该轨迹可以并行生成,然后将其组合在一起以达到与较长轨迹相同的效果。至关重要的是,我们通过使用基于生成的对抗网络(GAN)架构来生成有效且多样化的激发轨迹的大数据库,从而提高数据集的生成速度和质量来进一步扩展这种方法。据我们所知,这是第一个使用多个环状轨迹探索系统识别的机器人技术,并开发基于GAN的技术,以缩小产生激发轨迹,这些激发轨迹在控制参数和惯性参数空间中都具有多样性。我们表明,我们的方法极大地加速了轨迹优化,同时提供了比常规方法更准确的系统识别。

Dynamic System Identification approaches usually heavily rely on the evolutionary and gradient-based optimisation techniques to produce optimal excitation trajectories for determining the physical parameters of robot platforms. Current optimisation techniques tend to generate single trajectories. This is expensive, and intractable for longer trajectories, thus limiting their efficacy for system identification. We propose to tackle this issue by using multiple shorter cyclic trajectories, which can be generated in parallel, and subsequently combined together to achieve the same effect as a longer trajectory. Crucially, we show how to scale this approach even further by increasing the generation speed and quality of the dataset through the use of generative adversarial network (GAN) based architectures to produce a large databases of valid and diverse excitation trajectories. To the best of our knowledge, this is the first robotics work to explore system identification with multiple cyclic trajectories and to develop GAN-based techniques for scaleably producing excitation trajectories that are diverse in both control parameter and inertial parameter spaces. We show that our approach dramatically accelerates trajectory optimisation, while simultaneously providing more accurate system identification than the conventional approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源