论文标题

一维旋转振荡振荡器阵列的非热拓扑

Non-Hermitian topology of one-dimensional spin-torque oscillator arrays

论文作者

Flebus, Benedetta, Duine, Rembert A., Hurst, Hilary M.

论文摘要

从基本的物理学角度和各种应用的构件中,已经对磁系统进行了广泛的研究。由于它们固有的耗散性质,它们的拓扑特性,尤其是激发的拓扑特性,仍然相对尚未探索。最近引入的非拓扑分类为耗散系统中的工程拓扑阶段提供了新的机会。在这里,我们提出了一个非热拓扑系统的宏伟实现。我们提案的关键要素是将自旋电流注入磁系统,从而改变甚至可以改变描述耗散的术语的迹象。我们表明,可以将一系列自旋变速器振荡器的磁化动力学映射到具有拓扑保护边缘状态的非热su-Schrieffer-Heeger模型。使用非线性运动方程的线性化动力学和数值解的精确对角化,我们发现可以通过调谐注入阵列的旋转电流来访问拓扑宏伟的相位。在拓扑非平凡的状态中,阵列边缘的单个旋转振荡器被驱动到自动振荡中并发出微波信号,而散装振荡器则保持不活跃。我们的发现具有记忆设备和旋转神经网络的实际实用性,这些神经网络依靠自旋变速器作为组成单元。

Magnetic systems have been extensively studied both from a fundamental physics perspective and as building blocks for a variety of applications. Their topological properties, in particular those of excitations, remain relatively unexplored due to their inherently dissipative nature. The recent introduction of non-Hermitian topological classifications opens up new opportunities for engineering topological phases in dissipative systems. Here, we propose a magnonic realization of a non-Hermitian topological system. A crucial ingredient of our proposal is the injection of spin current into the magnetic system, which alters and can even change the sign of terms describing dissipation. We show that the magnetic dynamics of an array of spin-torque oscillators can be mapped onto a non-Hermitian Su-Schrieffer-Heeger model exhibiting topologically protected edge states. Using exact diagonalization of the linearized dynamics and numerical solutions of the non-linear equations of motion, we find that a topological magnonic phase can be accessed by tuning the spin current injected into the array. In the topologically nontrivial regime, a single spin-torque oscillator on the edge of the array is driven into auto-oscillation and emits a microwave signal, while the bulk oscillators remain inactive. Our findings have practical utility for memory devices and spintronics neural networks relying on spin-torque oscillators as constituent units.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源