论文标题

Wheel Graph策略用于网络的定位

Wheel graph strategy for PEV localization of networks

论文作者

Jalan, Sarika, Pradhan, Priodyuti

论文摘要

对复杂网络的特征向量定位性能的研究不仅对于了解诸如网络中心度测量,光谱分配,近似算法的发展等基本网络问题的深入研究不仅重要,而且对于理解许多现实世界现象,例如诸如诸如疾病的疾病蔓延,脑网络网络动力学的关键性,至关重要。对于网络而言,当特征向量的大多数成分接近零时,特征向量是本地化的,其中一些组件的值为很高。在本文中,我们设计了一种方法来从给定的输入网络构建主要特征向量(PEV)本地化网络。该方法依赖于在给定输入网络中添加具有轮子图的小组件。通过广泛的数值模拟和基于输入网络最大特征值的分析公式,我们计算了将合并网络的PEV定位所需的轮映的大小。使用易感感染感染的模型,我们证明了这种方法对于各种模型和现实世界网络的成功,将其视为输入网络。我们表明,在此类PEV局部网络上,该疾病在爆发之前就位于网络结构的一个小区域内。这项研究与控制网络代表的复杂系统的传播过程有关。

Investigation of eigenvector localization properties of complex networks is not only important for gaining insight into fundamental network problems such as network centrality measure, spectral partitioning, development of approximation algorithms, but also is crucial for understanding many real-world phenomena such as disease spreading, criticality in brain network dynamics. For a network, an eigenvector is said to be localized when most of its components take value near to zero, with a few components taking very high values. In this article, we devise a methodology to construct a principal eigenvector (PEV) localized network from a given input network. The methodology relies on adding a small component having a wheel graph to the given input network. By extensive numerical simulation and an analytical formulation based on the largest eigenvalue of the input network, we compute the size of the wheel graph required to localize the PEV of the combined network. Using the susceptible-infected-susceptible model, we demonstrate the success of this method for various models and real-world networks consider as input networks. We show that on such PEV localized networks, the disease gets localized within a small region of the network structure before the outbreaks. The study is relevant in controlling spreading processes on complex systems represented by networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源