论文标题
在部分连接的设置下,用于紧急车辆的动态队列跳跃车道:多代理深入学习方法
Dynamic Queue-Jump Lane for Emergency Vehicles under Partially Connected Settings: A Multi-Agent Deep Reinforcement Learning Approach
论文作者
论文摘要
紧急车辆(EMV)服务是城市的关键功能,由于城市交通拥堵而极具挑战性。 EMV服务延迟背后的主要原因是车辆之间缺乏沟通和合作,阻止EMV。在本文中,我们研究了V2X连通性下EMV服务的改进。我们考虑建立动态队列跳跃车道(DQJLS),基于在没有连接的人类驱动车辆的情况下对连接车辆的实时协调。我们为DQJL协调策略开发了一种新颖的马尔可夫决策过程制定,该策略明确解释了驾驶员对接近EMV的屈服模式的不确定性。基于代表演员车辆的演员和批评家的神经网络,我们开发了一种多代理参与者的深度强化学习算法,该学习算法处理了不同数量的车辆和交通中的连接车辆的随机比例。通过间接和直接的强化学习,我们介绍了两个模式,以解决此连接的车辆应用中的多代理增强学习,以了解最佳的协调策略。在微模拟测试床上,两种方法均经过验证,以快速,安全地建立DQJL。验证结果表明,通过DQJL协调策略,EMV通过链接级智能城市道路节省了高达30%的时间,而不是基线场景。
Emergency vehicle (EMV) service is a key function of cities and is exceedingly challenging due to urban traffic congestion. The main reason behind EMV service delay is the lack of communication and cooperation between vehicles blocking EMVs. In this paper, we study the improvement of EMV service under V2X connectivity. We consider the establishment of dynamic queue jump lanes (DQJLs) based on real-time coordination of connected vehicles in the presence of non-connected human-driven vehicles. We develop a novel Markov decision process formulation for the DQJL coordination strategies, which explicitly accounts for the uncertainty of drivers' yielding pattern to approaching EMVs. Based on pairs of neural networks representing actors and critics for agent vehicles, we develop a multi-agent actor-critic deep reinforcement learning algorithm that handles a varying number of vehicles and a random proportion of connected vehicles in the traffic. Approaching the optimal coordination strategies via indirect and direct reinforcement learning, we present two schemata to address multi-agent reinforcement learning on this connected vehicle application. Both approaches are validated, on a micro-simulation testbed SUMO, to establish a DQJL fast and safely. Validation results reveal that, with DQJL coordination strategies, it saves up to 30% time for EMVs to pass a link-level intelligent urban roadway than the baseline scenario.