论文标题
使用多个实例学习的乳腺癌组织病理学图像分类和本地化
Breast Cancer Histopathology Image Classification and Localization using Multiple Instance Learning
论文作者
论文摘要
乳腺癌在女性中的癌症死亡率最高。计算机辅助的病理学分析微观组织病理学图像以诊断乳腺癌患者数量越来越多,可以减少诊断的成本和延迟。在过去的十年中,在分类和本地化任务中实现最新表现,组织病理学的深度学习引起了人们的关注。卷积神经网络是一个深度学习框架,在组织图像分析中提供了显着的结果,但缺乏提供决策背后的解释和推理。我们旨在通过在微观组织病理学图像上提供本地化来更好地解释分类结果。我们将图像分类问题构图为弱监督的多个实例学习问题,其中图像是补丁的收集,即实例。基于注意力的多个实例学习(A-MIL)在图像中将注意力从图像中定位在图像中的贴片上,并使用它们来对图像进行分类。我们介绍了两个公开可用的Breakhis和Bach数据集的分类和本地化结果。将分类和可视化结果与其他最近的技术进行了比较。提出的方法在不损害分类准确性的情况下实现了更好的定位结果。
Breast cancer has the highest mortality among cancers in women. Computer-aided pathology to analyze microscopic histopathology images for diagnosis with an increasing number of breast cancer patients can bring the cost and delays of diagnosis down. Deep learning in histopathology has attracted attention over the last decade of achieving state-of-the-art performance in classification and localization tasks. The convolutional neural network, a deep learning framework, provides remarkable results in tissue images analysis, but lacks in providing interpretation and reasoning behind the decisions. We aim to provide a better interpretation of classification results by providing localization on microscopic histopathology images. We frame the image classification problem as weakly supervised multiple instance learning problem where an image is collection of patches i.e. instances. Attention-based multiple instance learning (A-MIL) learns attention on the patches from the image to localize the malignant and normal regions in an image and use them to classify the image. We present classification and localization results on two publicly available BreakHIS and BACH dataset. The classification and visualization results are compared with other recent techniques. The proposed method achieves better localization results without compromising classification accuracy.