论文标题
$κ$ - 定型的狄拉克方程的量化
Quantisation of $κ$-deformed Dirac equation
论文作者
论文摘要
在本文中,我们研究了$κ$定义的时空中狄拉克场理论的量化。我们采用一种量化方法,该方法仅使用运动方程来量化磁场。从$κ$变形的Dirac方程式开始,在变形参数$ a $中有效至一阶,我们得出了变形的不相等的时间反享受的反广告关系,从而导致未构造的振荡器代数。利用$κ$ formed的旋转器及其伴随之间施加变形的不等时间的反通信关系的自由,我们还得出了变形的振荡器代数。我们表明,变形的数字运算符是对应于全局相变对称的保守电荷。我们构建了$κ$成型的保守电流,在$ a $中有效至一阶,对应于奇偶校验和$κ$ - $κ$ - 定型的狄拉克方程的时间。我们表明,这些保守的电流和费用具有质量依赖的校正,有效期为$ a $。这种新型特征有望在粒子物理学中具有实验意义。我们还表明,不可能构建与电荷偶联相关的保守电流,这表明狄拉克粒子及其反颗粒在$κ$ -SPACE时满足不同的方程式。
In this paper, we study the quantisation of Dirac field theory in the $κ$-deformed space-time. We adopt a quantisation method that uses only equations of motion for quantising the field. Starting from $κ$-deformed Dirac equation, valid up to first order in the deformation parameter $a$, we derive deformed unequal time anti-commutation relation between deformed field and its adjoint, leading to undeformed oscillator algebra. Exploiting the freedom of imposing a deformed unequal time anti-commutation relations between $κ$-deformed spinor and its adjoint, we also derive a deformed oscillator algebra. We show that deformed number operator is the conserved charge corresponding to global phase transformation symmetry. We construct the $κ$-deformed conserved currents, valid up to first order in $a$, corresponding to parity and time-reversal symmetries of $κ$-deformed Dirac equation also. We show that these conserved currents and charges have a mass-dependent correction, valid up to first order in $a$. This novel feature is expected to have experimental significance in particle physics. We also show that it is not possible to construct a conserved current associated with charge conjugation, showing that the Dirac particle and its anti-particle satisfy different equations in $κ$-space-time.