论文标题

GPU加速移动多视图样式转移

GPU-Accelerated Mobile Multi-view Style Transfer

论文作者

Kohli, Puneet, Gunaseelan, Saravana, Orozco, Jason, Hua, Yiwen, Li, Edward, Dahlquist, Nicolas

论文摘要

估计2018年出售的智能手机中有60%配备了多台后置摄像头,从而实现了各种3D启用的应用程序,例如3D照片。 3D照片平台(Facebook 3D照片,HoloPix等)的成功取决于用户生成的内容的稳定涌入。这些平台必须提供简单的图像操纵工具来促进内容创建,类似于传统的照片平台。由GPU技术的最新进步推动的艺术神经风格转移就是增强传统照片的一种工具。但是,天真地将单视神经样式转移到多视图方案会产生视觉上不一致的结果,并且在移动设备上的速度很慢。我们提出了GPU加速的多视图转移管道,该管道在移动平台上具有按需性能的视图之间的样式一致性。我们的管道是模块化的,从立体图像对产生高质量的深度和视差效应。

An estimated 60% of smartphones sold in 2018 were equipped with multiple rear cameras, enabling a wide variety of 3D-enabled applications such as 3D Photos. The success of 3D Photo platforms (Facebook 3D Photo, Holopix, etc) depend on a steady influx of user generated content. These platforms must provide simple image manipulation tools to facilitate content creation, akin to traditional photo platforms. Artistic neural style transfer, propelled by recent advancements in GPU technology, is one such tool for enhancing traditional photos. However, naively extrapolating single-view neural style transfer to the multi-view scenario produces visually inconsistent results and is prohibitively slow on mobile devices. We present a GPU-accelerated multi-view style transfer pipeline which enforces style consistency between views with on-demand performance on mobile platforms. Our pipeline is modular and creates high quality depth and parallax effects from a stereoscopic image pair.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源