论文标题
在一维的两级离散非线性非线性schrödinger晶格上,不高度的stagger词
Unstaggered-staggered solitons on one- and two-dimensional two-component discrete nonlinear Schrödinger lattices
论文作者
论文摘要
我们研究了从两个耦合离散的非线性schrödinger(DNLS)方程的系统中出现的耦合,并具有自我吸引的现场自相度非线性非线性,并由排斥性的跨相模型相互作用,在1D和2D lattice domains上伴随着自我吸引力的自相度非线性。这些混合模式是一种“共生”类型,因为孤立的每个组件只能携带普通的未施加孤子。尽管大多数在DNLS系统上的工作都涉及对称性的以现场为中心的孤子,但这些模型产生了各种其他激发态,这也可能是稳定的。其中最简单的是以离散扭曲的孤子形式的反对称状态,它们在连续限制中没有对应的态。在延伸到2D晶格域中,扭曲状态的天然对应物是涡旋孤子。我们首先为孤子引入一个变性近似(VA),然后以数值校正其构造精确的固定解决方案,然后将其用作模拟的初始条件,以检查固定状态是否在时间演化下持续存在。获得的两个组件解决方案包括(i)1D基本扭曲和扭曲的孤子对,(ii)2d基本基本孤子对和(iii)2d涡流孤子对。我们还重点介绍了其他各种瞬时动力学制度,例如呼吸器和振幅死亡。这些发现适用于建模二进制玻璃纤维凝结物,并具有深层晶格电位,具有相同或不同的原子质量,这两个成分以及双峰光学波导的阵列。
We study coupled unstaggered-staggered soliton pairs emergent from a system of two coupled discrete nonlinear Schrödinger (DNLS) equations with the self-attractive on-site self-phase-modulation nonlinearity, coupled by the repulsive cross-phase-modulation interaction, on 1D and 2D lattice domains. These mixed modes are of a "symbiotic" type, as each component in isolation may only carry ordinary unstaggered solitons. While most work on DNLS systems addressed symmetric on-site-centered fundamental solitons, these models give rise to a variety of other excited states, which may also be stable. The simplest among them are antisymmetric states in the form of discrete twisted solitons, which have no counterparts in the continuum limit. In the extension to 2D lattice domains, a natural counterpart of the twisted states are vortical solitons. We first introduce a variational approximation (VA) for the solitons, and then correct it numerically to construct exact stationary solutions, which are then used as initial conditions for simulations to check if the stationary states persist under time evolution. Two-component solutions obtained include (i) 1D fundamental-twisted and twisted-twisted soliton pairs, (ii) 2D fundamental-fundamental soliton pairs, and (iii) 2D vortical-vortical soliton pairs. We also highlight a variety of other transient dynamical regimes, such as breathers and amplitude death. The findings apply to modeling binary Bose-Einstein condensates, loaded in a deep lattice potential, with identical or different atomic masses of the two components, and arrays of bimodal optical waveguides.