论文标题
肌肉骨骼图像分析的深度学习
Deep Learning for Musculoskeletal Image Analysis
论文作者
论文摘要
肌肉骨骼(MSK)疾病患者的诊断,预后和治疗需要放射学成像(使用计算机断层扫描,磁共振成像(MRI)和超声检查)及其专家放射学家的精确分析。放射学扫描还可以帮助评估代谢健康,衰老和糖尿病。这项研究介绍了如何使用机械学习方法,特别是深度学习方法,用于快速和准确的MRI扫描图像分析,这是MSK放射学中未经修复的临床。作为一个充满挑战的例子,我们专注于从MRI扫描中自动分析膝关节图像,并研究机器学习分类,包括拟象化和前交叉韧带撕裂在内的各种异常。使用广泛使用的基于卷积神经网络(CNN)结构,我们在有限的成像数据制度下对不同神经网络体系结构的膝关节异常分类性能进行了相对评估,并在分类异常时比较了单个和多视图成像。有希望的结果表明,在常规临床评估中,基于多视图深度学习的分类可能使用基于多视图的深度学习分类。
The diagnosis, prognosis, and treatment of patients with musculoskeletal (MSK) disorders require radiology imaging (using computed tomography, magnetic resonance imaging(MRI), and ultrasound) and their precise analysis by expert radiologists. Radiology scans can also help assessment of metabolic health, aging, and diabetes. This study presents how machinelearning, specifically deep learning methods, can be used for rapidand accurate image analysis of MRI scans, an unmet clinicalneed in MSK radiology. As a challenging example, we focus on automatic analysis of knee images from MRI scans and study machine learning classification of various abnormalities including meniscus and anterior cruciate ligament tears. Using widely used convolutional neural network (CNN) based architectures, we comparatively evaluated the knee abnormality classification performances of different neural network architectures under limited imaging data regime and compared single and multi-view imaging when classifying the abnormalities. Promising results indicated the potential use of multi-view deep learning based classification of MSK abnormalities in routine clinical assessment.