论文标题

PointAsnl:使用自适应采样的非局部神经网络处理稳健的点云处理

PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling

论文作者

Yan, Xu, Zheng, Chaoda, Li, Zhen, Wang, Sheng, Cui, Shuguang

论文摘要

原始点云数据不可避免地包含通过从3D传感器或重建算法采集的异常值或噪声。在本文中,我们提出了一个新颖的端到端网络,用于可靠的点云处理,名为PointAsnl,可以有效地处理点云。我们方法中的关键组件是自适应采样(AS)模块。它首先将邻居从最初的采样点(FPS)重新进行了重量,然后自适应地调整了超出整个点云的采样点。我们的AS模块不仅可以使点云的特征学习受益,而且可以减轻异常值的偏见效果。为了进一步捕获采样点的邻居和远程依赖关系,我们提出了一个受非局部操作启发的局部非局部(L-NL)模块。这样的L-NL模块使学习过程对噪声不敏感。广泛的实验验证了我们在点云处理任务中的鲁棒性和优越性,无论综合数据,室内数据和室外数据如何,都有或没有噪声。具体而言,PointAsnl在所有数据集上实现了针对分类和分割任务的最新性能,并且在现实世界中的户外Semantickitti数据集上的先前方法显着胜过,并具有很大的噪音。我们的代码通过https://github.com/yanx27/pointasnl发布。

Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel end-to-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-the-art robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https://github.com/yanx27/PointASNL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源