论文标题

离散的卡尔曼估计和三个球不平等现象

Discrete Carleman estimates and three balls inequalities

论文作者

Fernández-Bertolin, Aingeru, Roncal, Luz, Rüland, Angkana, Stan, Diana

论文摘要

我们证明了对数凸度估计值和离散磁性schrödinger算子的三个球不等式。这些定量连接了独特的延续属性失败的离散设置,并且已知在适当的规律性假设下拥有唯一的延续属性的连续性设置。作为可能具有独立利益的关键辅助结果,我们为这些离散的运营商提供了卡尔曼估计。

We prove logarithmic convexity estimates and three balls inequalities for discrete magnetic Schrödinger operators. These quantitatively connect the discrete setting in which the unique continuation property fails and the continuum setting in which the unique continuation property is known to hold under suitable regularity assumptions. As a key auxiliary result which might be of independent interest we present a Carleman estimate for these discrete operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源