论文标题

在无人机辅助物联网网络中收集新鲜数据的深度加固学习

Deep Reinforcement Learning for Fresh Data Collection in UAV-assisted IoT Networks

论文作者

Yi, Mengjie, Wang, Xijun, Liu, Juan, Zhang, Yan, Bai, Bo

论文摘要

由于灵活性和低运营成本,因此派遣无人机(UAV)从分布式传感器中收集信息将成为物联网(IoT)的有前途的解决方案(IOT),尤其是对于时间关键的应用程序。如何维护新鲜信息是一个具有挑战性的问题。在本文中,我们研究了无人机辅助的物联网网络中的新鲜数据收集问题。尤其是,无人机朝着传感器飞行,以在给定持续时间内收集状态更新数据包,同时保持非负剩余能量。我们制定了马尔可夫决策过程(MDP),以找到无人机的最佳飞行轨迹和传感器的传输计划,以最大程度地减少信息时代的加权总和(AOI)。进一步提出了基于深入增强学习(DRL)的无人机辅助数据收集算法,以克服维度的诅咒。广泛的仿真结果表明,与其他基线算法相比,所提出的基于DRL的算法可以显着减少AOI的加权总和。

Due to the flexibility and low operational cost, dispatching unmanned aerial vehicles (UAVs) to collect information from distributed sensors is expected to be a promising solution in Internet of Things (IoT), especially for time-critical applications. How to maintain the information freshness is a challenging issue. In this paper, we investigate the fresh data collection problem in UAV-assisted IoT networks. Particularly, the UAV flies towards the sensors to collect status update packets within a given duration while maintaining a non-negative residual energy. We formulate a Markov Decision Process (MDP) to find the optimal flight trajectory of the UAV and transmission scheduling of the sensors that minimizes the weighted sum of the age of information (AoI). A UAV-assisted data collection algorithm based on deep reinforcement learning (DRL) is further proposed to overcome the curse of dimensionality. Extensive simulation results demonstrate that the proposed DRL-based algorithm can significantly reduce the weighted sum of the AoI compared to other baseline algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源