论文标题

信息制图挖掘

Information cartography in association rule mining

论文作者

Fister Jr., Iztok, Fister, Iztok

论文摘要

关联规则挖掘是一种机器学习方法,可在巨大的交易数据库中发现属性之间的有趣关系。通常,关联规则挖掘的算法会产生大量的关联规则,从中很难提取结构化知识,并以适合用户的形式自动呈现该规则。最近,提出了一项信息制图,以创建结构化信息摘要,并使用称为“地铁地图”的方法可视化。这应用于几个问题域,其中需要进行模式开采。这项研究的目的是开发一种自动创建通过关联规则挖掘获得的信息地铁图的方法,从而将其适用性传播到其他机器学习方法。尽管所提出的方法由多个步骤组成,但其核心提出了在研究中定义为优化问题的地铁图构造,该问题是使用进化算法解决的。最后,将其应用于四个著名的UCI机器学习数据集和一个运动数据集。可视化所得的地铁地图不仅证明这是一个合理的工具,用于展示隐藏在数据中的结构化知识,而且还可以向用户讲故事。

Association Rule Mining is a machine learning method for discovering the interesting relations between the attributes in a huge transaction database. Typically, algorithms for Association Rule Mining generate a huge number of association rules, from which it is hard to extract structured knowledge and present this automatically in a form that would be suitable for the user. Recently, an information cartography has been proposed for creating structured summaries of information and visualizing with methodology called "metro maps". This was applied to several problem domains, where pattern mining was necessary. The aim of this study is to develop a method for automatic creation of metro maps of information obtained by Association Rule Mining and, thus, spread its applicability to the other machine learning methods. Although the proposed method consists of multiple steps, its core presents metro map construction that is defined in the study as an optimization problem, which is solved using an evolutionary algorithm. Finally, this was applied to four well-known UCI Machine Learning datasets and one sport dataset. Visualizing the resulted metro maps not only justifies that this is a suitable tool for presenting structured knowledge hidden in data, but also that they can tell stories to users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源