论文标题

图像散步通过最小化离散组件的Wasserstein距离

Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance

论文作者

Doan, Khoa D., Manchanda, Saurav, Badirli, Sarkhan, Reddy, Chandan K.

论文摘要

图像散列是要求各种实际情况有效和有效解决方案的基本问题之一。对抗性自动编码器被证明能够隐式学习可产生平衡且高质量的哈希码的强大,具有局部性的哈希功能。但是,现有的对抗性散列方法无效用于大规模图像检索应用程序。具体来说,它们需要指数级的样本才能生成最佳的哈希代码和训练的明显高计算成本。在本文中,我们表明,较高的样本复杂性需求通常会导致对抗性散列方法的优化检索性能。为了应对这一挑战,我们提出了一种新的对抗性Autoencoder散列方法,该方法的样本要求和计算成本要低得多。具体而言,通过在低维离散空间中利用哈希函数的所需特性,我们的方法通过平均一组易于计算的一维wasserstein距离来有效地估算Wasserstein距离的更好变体。与其他对抗性哈希方法相比,所得的散列方法具有更好的样品复杂性,因此具有更好的概括性。此外,使用我们的方法可大大降低计算成本。我们对几个现实世界数据集进行了实验,并表明所提出的方法的表现优于竞争性的哈希方法,比当前最新图像散列方法提高了10%。本文随附的代码可在GitHub(https://github.com/khoadoan/adversarial-hashing)上获得。

Image hashing is one of the fundamental problems that demand both efficient and effective solutions for various practical scenarios. Adversarial autoencoders are shown to be able to implicitly learn a robust, locality-preserving hash function that generates balanced and high-quality hash codes. However, the existing adversarial hashing methods are inefficient to be employed for large-scale image retrieval applications. Specifically, they require an exponential number of samples to be able to generate optimal hash codes and a significantly high computational cost to train. In this paper, we show that the high sample-complexity requirement often results in sub-optimal retrieval performance of the adversarial hashing methods. To address this challenge, we propose a new adversarial-autoencoder hashing approach that has a much lower sample requirement and computational cost. Specifically, by exploiting the desired properties of the hash function in the low-dimensional, discrete space, our method efficiently estimates a better variant of Wasserstein distance by averaging a set of easy-to-compute one-dimensional Wasserstein distances. The resulting hashing approach has an order-of-magnitude better sample complexity, thus better generalization property, compared to the other adversarial hashing methods. In addition, the computational cost is significantly reduced using our approach. We conduct experiments on several real-world datasets and show that the proposed method outperforms the competing hashing methods, achieving up to 10% improvement over the current state-of-the-art image hashing methods. The code accompanying this paper is available on Github (https://github.com/khoadoan/adversarial-hashing).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源