论文标题
山雀类型的替代方案,用于作用于感谢
Tits type alternative for groups acting on toric affine varieties
论文作者
论文摘要
给定一个复的仿射代数$ x $和一系列单参数单位子组$ u_1,\ ldots,$ \ m \ m mathop {\ rm aut}(x)$,这些(x)$由$ x $的$ g $ g $ g $ g y_1,\ ldots y fer'heral o x $归一化类型:$ g $是一个独立的代数组,或者包含非亚洲免费子组。我们推断出,如果$ g $是$ g $ oarbit $ x $的$ 2 $转换,则$ g $包含一个非亚洲免费子组,因此,$ g $是指数级增长。
Given a toric affine algebraic variety $X$ and a collection of one-parameter unipotent subgroups $U_1,\ldots,U_s$ of $\mathop{\rm Aut}(X)$ which are normalized by the torus acting on $X$, we show that the group $G$ generated by $U_1,\ldots,U_s$ verifies the following alternative of Tits' type: either $G$ is a unipotent algebraic group, or it contains a non-abelian free subgroup. We deduce that if $G$ is $2$-transitive on a $G$-orbit in $X$, then $G$ contains a non-abelian free subgroup, and so, is of exponential growth.