论文标题
高斯空间上光滑密度的信息几何形状:庞加莱的不平等现象
Information Geometry of smooth densities on the Gaussian space: Poincaré inequalities
论文作者
论文摘要
我们从其高斯均值值中定义的随机变量的偏差偏差的orlicz规范。假定随机变量是平滑的,并且结合本身取决于梯度的Orlicz规范。讨论了非参数信息几何形状的应用。
We derive bounds for the Orlicz norm of the deviation of a random variable defined on $\mathbb{R}^n$ from its Gaussian mean value. The random variables are assumed to be smooth and the bound itself depends on the Orlicz norm of the gradient. Applications to non-parametric Information Geometry are discussed.