论文标题

强大优化未知目标的混合策略

Mixed Strategies for Robust Optimization of Unknown Objectives

论文作者

Sessa, Pier Giuseppe, Bogunovic, Ilija, Kamgarpour, Maryam, Krause, Andreas

论文摘要

我们考虑强大的优化问题,目标是在不确定参数的最坏情况下优化未知目标函数。对于这种设置,我们设计了一种新型的样品效率算法GP-MRO,该算法依次从嘈杂的点评估中了解了未知目标。 GP-MRO试图发现一种强大而随机的混合策略,从而最大程度地提高了最差的预期目标价值。为了实现这一目标,它将在线学习中的技术与高斯流程的非参数信心界限相结合。我们的理论结果表征了GP-Mro所需的样品数量,以发现针对不同感兴趣的GP内核的近乎最佳的混合策略。我们通过实验证明了我们在合成数据集以及自动驾驶汽车的人为辅助轨迹计划任务上的性能。在我们的模拟中,我们表明,强大的确定性策略可能过于保守,而GP-MRO发现的混合策略显着改善了整体绩效。

We consider robust optimization problems, where the goal is to optimize an unknown objective function against the worst-case realization of an uncertain parameter. For this setting, we design a novel sample-efficient algorithm GP-MRO, which sequentially learns about the unknown objective from noisy point evaluations. GP-MRO seeks to discover a robust and randomized mixed strategy, that maximizes the worst-case expected objective value. To achieve this, it combines techniques from online learning with nonparametric confidence bounds from Gaussian processes. Our theoretical results characterize the number of samples required by GP-MRO to discover a robust near-optimal mixed strategy for different GP kernels of interest. We experimentally demonstrate the performance of our algorithm on synthetic datasets and on human-assisted trajectory planning tasks for autonomous vehicles. In our simulations, we show that robust deterministic strategies can be overly conservative, while the mixed strategies found by GP-MRO significantly improve the overall performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源