论文标题

5D Weyl半学的通用高阶拓扑:边缘拓扑,边缘汉密尔顿和嵌套Wilson Loop

Universal Higher-Order Topology from 5D Weyl semimetal: Edge topology, edge Hamiltonian and nested Wilson loop

论文作者

Hashimoto, Koji, Matsuo, Yoshinori

论文摘要

发现了高阶拓扑绝缘子(HOTIS)或多极绝缘子(托管特殊角状态)[ARXIV:1611.07987,ARXIV:1708.03636]。它是独立发现的[Arxiv:1702.00624],连续5维(5d)Weyl半仪器通常托管角状态,而4D A类和3D类AIII级AIII拓扑绝缘子也是如此。在本文中,我们进一步证实,5D Weyl半学在尺寸降低后会导致通用高阶拓扑。首先,我们解释了保护5D Weyl半法的离散对称性,并描述了5D Weyl半学的尺寸减小到连续限制中流行的HOTIS。我们计算出最通用的边界条件的5D Weyl半准边的边缘状态携带的拓扑电荷。拓扑电荷是一种狄拉克单极,也可以从边缘哈密顿人看来,始终是3D Weyl semimetal的形式。这种边缘拓扑导致边缘状态或角状态通常,这表明5D Weyl半学被认为是Hotis角态的物理结构起源。此外,我们明确计算了5D Weyl半学的嵌套Wilson环,发现拓扑结构与Dirac Monopole的Wilson环相同。

Higher-order topological insulators (HOTIs) or multipole insulators, hosting peculiar corner states, were discovered [arXiv:1611.07987, arXiv:1708.03636]. It was independently discovered [arXiv:1702.00624] that continuum 5-dimensional (5D) Weyl semimetals generically host the corner states, and so do 4D class A and 3D class AIII topological insulators. In this paper we further confirm that the 5D Weyl semimetals, upon dimensional reduction, lead to universal higher-order topology. First we explain a discrete symmetry protecting the 5D Weyl semimetals, and describe dimensional reductions of the 5D Weyl semimetals to the popular HOTIs in the continuum limit. We calculate the topological charge carried by edge states of the 5D Weyl semimetal, for the most generic boundary condition. The topological charge is a Dirac monopole, which can also be seen from that edge Hamiltonians are always of the form of a 3D Weyl semimetal. This edge topology leads to the edge-of-edge states, or the corner states, generically, suggesting that the 5D Weyl semimetal is thought of as a physical structural origin of corner states in HOTIs. In addition, we explicitly calculate a nested Wilson loop of the 5D Weyl semimetal and find that the topological structure is identical to that of a Wilson loop of a Dirac monopole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源