论文标题

膜中的屈曲和亚稳定性和扩张阵列

Buckling and metastability in membranes with dilation arrays

论文作者

Plummer, Abigail, Nelson, David R.

论文摘要

我们研究了周期性的杂质阵列,这些杂质会产生局部膨胀区域,并嵌入二维晶体中。这些阵列提供了形状内存的简单弹性模型。随着每种扩张杂质的大小增加(或弯曲弯曲的相对成本减少),在每种$ m $杂质的每种杂质上都可以符合$ 2^m $ cobscrantable的表面配置的订单$ 2^m $ sugrations的表面配置,从而使每个杂物都具有符合不同的“自旋”配置。通过离散模拟和弹性板的非线性连续性理论,我们探索了分离的扩张和扩张阵列在零温度下的屈曲,并由与Ising抗fiferromagnets的类比引导。我们猜想了具有三角形和平方杂质超级晶格的系统的基础状态,并简要评论有限温度下的可能行为。

We study periodic arrays of impurities that create localized regions of expansion, embedded in two-dimensional crystalline membranes. These arrays provide a simple elastic model of shape memory. As the size of each dilational impurity increases (or the relative cost of bending to stretching decreases), it becomes energetically favorable for each of the $M$ impurities to buckle up or down into the third dimension, thus allowing for of order $2^M$ metastable surface configurations corresponding to different impurity "spin" configurations. With both discrete simulations and the nonlinear continuum theory of elastic plates, we explore the buckling of both isolated dilations and dilation arrays at zero temperature, guided by analogies with Ising antiferromagnets. We conjecture ground states for systems with triangular and square impurity superlattices, and comment briefly on the possible behaviors at finite temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源