论文标题
在分支随机步行的尾巴上
On the tail of the branching random walk local time
论文作者
论文摘要
考虑在$ \ mathbb {z}^d $,$ d \ geq 1 $上进行关键的分支随机步行,从原始粒子开始,让$ l(x)$是访问顶点$ x $的粒子的总数。我们在适当条件下在后代分布的适当条件下研究$ l(x)$的尾巴。特别是,如果后代分布有指数级时刻,我们的结果就会成立。
Consider a critical branching random walk on $\mathbb{Z}^d$, $d\geq 1$, started with a single particle at the origin, and let $L(x)$ be the total number of particles that ever visit a vertex $x$. We study the tail of $L(x)$ under suitable conditions on the offspring distribution. In particular, our results hold if the offspring distribution has an exponential moment.