论文标题
热量和压力电离在温暖,密集的mgsio $ _3 $中使用第一原理计算机仿真
Thermal and Pressure Ionization in Warm, Dense MgSiO$_3$ Studied with First-Principles Computer Simulations
论文作者
论文摘要
使用路径积分蒙特卡洛和密度功能分子动力学(DFT-MD)模拟,我们研究了MGSIO $ _3 $ ENSTATITE在温暖密集物质方面的性质。我们生成一个一致的状态方程(EOS),该方程跨越广泛的温度和密度(10 $^4 $ -10 $^7 $ K和6.42---64.16 g CM $^{ - 3} $)。我们得出了冲击雨果曲线,这与实验非常吻合。我们通过位置恒定温度下的内部能达到最小值作为密度或压力的函数,从而确定热电离和压力电离之间的边界。在低密度下,随着自由状态的重量的变化,内部能量随着密度的增加而降低。热电离主导。相反,在高密度的压力电离状态下,内部能量随密度增加。我们确定了这两个方案之间的边界,并表明沿冲击雨龙曲线的压缩最大值是因为k壳电子被热离子化而不是压力电离。
Using path integral Monte Carlo and density functional molecular dynamics (DFT-MD) simulations, we study the properties of MgSiO$_3$ enstatite in the regime of warm dense matter. We generate a consistent equation of state (EOS) that spans across a wide range of temperatures and densities (10$^4$--10$^7$ K and 6.42--64.16 g cm$^{-3}$). We derive the shock Hugoniot curve, that is in good agreement with the experiments. We identify the boundary between the regimes of thermal ionization and pressure ionization by locating where the internal energy at constant temperature attains a minimum as a function of density or pressure. At low density, the internal energy decreases with increasing density as the weight of free states changes. Thermal ionization dominates. Conversely, at high density, in the regime of pressure ionization, the internal energy increases with density. We determine the boundary between the two regimes and show that the compression maximum along the shock Hugoniot curve occurs because K shell electrons become thermally ionized rather than pressure ionized.