论文标题

分形秩序和新兴的费米斯仪理论

Fractonic order and emergent fermionic gauge theory

论文作者

Shirley, Wilbur

论文摘要

我们考虑了在刚性子系统中保守费米亚奇偶校验的费米子系统,并描述了测量此类子系统费米昂奇偶校验对称性以获取玻感旋转汉密尔顿人的明确程序。我们表明,在三个空间维度中衡量平面或分形子系统费物奇偶校验对称性会导致多种具有出现的以繁殖费米仪理论为特征的新型间隙分裂订单的精确解决的自旋模型。这些模型的低能量激发包括迁移率限制和紧急费米子统计的分数准颗粒。我们通过一系列例子说明了这种现象,包括叶状分裂相和分形旋转液体的费米子类似物。我们发现,叶状类似物实际上表现出与骨器对应物相同的分形顺序,而对于费米子分形旋转液体通常并非如此。

We consider fermionic systems in which fermion parity is conserved within rigid subsystems, and describe an explicit procedure for gauging such subsystem fermion parity symmetries to obtain bosonic spin Hamiltonians. We show that gauging planar or fractal subsystem fermion parity symmetry in three spatial dimensions gives rise to a plethora of exactly solvable spin models exhibiting novel gapped fractonic orders characterized by emergent fermionic gauge theory. The low energy excitations of these models include fractional quasiparticles with constrained mobility and emergent fermionic statistics. We illustrate this phenomenon through a series of examples including fermionic analogs of both foliated fracton phases and fractal spin liquids. We find that the foliated analogs actually exhibit the same fractonic order as their bosonic counterparts, while this is not generally the case for fermionic fractal spin liquids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源