论文标题
对几次学习的元学习信心
Meta-Learned Confidence for Few-shot Learning
论文作者
论文摘要
转导推断是在几次学习设置中解决数据缺陷问题的有效手段。几个基于衡量标准的方法的一种流行的跨传输推理技术是,用最自信的查询示例的平均值或所有查询样本的信心加权平均值来更新每个类的原型。但是,这里有一个警告是模型置信度可能不可靠,这可能会导致不正确的预测。为了解决这个问题,我们建议对每个查询样本的信心进行元学习,以将最佳权重分配给未标记的查询,从而改善模型对看不见的任务的跨性推理性能。我们通过在各种模型和数据扰动下的任务分布上的输入自适应距离度量来实现这一目标,这将对未见任务的不同不确定性下的模型预测执行一致性。此外,我们还提出了一个正则化,该正规化明确地实现了高维嵌入载体不同维度的预测的一致性。我们在四个基准数据集上使用元学习的信心来验证我们的几杆学习模型,在这些数据集上,它在很大程度上胜过了最近的基线,并获得了新的最新结果。在半监督几次学习任务上的进一步应用还可以对基准进行重大的性能改善。我们的算法的源代码可在https://github.com/seongmin-kye/mct上获得。
Transductive inference is an effective means of tackling the data deficiency problem in few-shot learning settings. A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples, or confidence-weighted average of all the query samples. However, a caveat here is that the model confidence may be unreliable, which may lead to incorrect predictions. To tackle this issue, we propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries such that they improve the model's transductive inference performance on unseen tasks. We achieve this by meta-learning an input-adaptive distance metric over a task distribution under various model and data perturbations, which will enforce consistency on the model predictions under diverse uncertainties for unseen tasks. Moreover, we additionally suggest a regularization which explicitly enforces the consistency on the predictions across the different dimensions of a high-dimensional embedding vector. We validate our few-shot learning model with meta-learned confidence on four benchmark datasets, on which it largely outperforms strong recent baselines and obtains new state-of-the-art results. Further application on semi-supervised few-shot learning tasks also yields significant performance improvements over the baselines. The source code of our algorithm is available at https://github.com/seongmin-kye/MCT.