论文标题

分数佩奇和伯恩斯坦空间

Fractional Paley-Wiener and Bernstein spaces

论文作者

Monguzzi, Alessandro, Peloso, Marco M., Salvatori, Maura

论文摘要

我们在一个变量中介绍并研究了整个功能的一系列空间家族,该变量概括了经典的Paley-Wiener和Bernstein空间。即,我们考虑了指数类型$ a $的全部功能,其对实际线的限制属于同质的sobolev space $ \ dot {w}^{s,p} $,我们称这些空间为分数的paley-wiener,如果$ p = 2 $ and nif $ p = $ p \ in($ pw),则$ p \ in(1,$ pw) $ \ Mathcal b^{s,p} _a $。对于这些空间,我们提供了佩奇的类型特征,我们指出了有关希尔伯特环境中抽样问题的一些事实,并证明了古典伯恩斯坦和Plancherel-Pólya不平等现象的概括。我们通过讨论许多开放问题来结束。

We introduce and study a family of spaces of entire functions in one variable that generalise the classical Paley-Wiener and Bernstein spaces. Namely, we consider entire functions of exponential type $a$ whose restriction to the real line belongs to the homogeneous Sobolev space $\dot{W}^{s,p}$ and we call these spaces fractional Paley-Wiener if $p=2$ and fractional Bernstein spaces if $p\in(1,\infty)$, that we denote by $PW^s_a$ and $\mathcal B^{s,p}_a$, respectively. For these spaces we provide a Paley-Wiener type characterization, we remark some facts about the sampling problem in the Hilbert setting and prove generalizations of the classical Bernstein and Plancherel-Pólya inequalities. We conclude by discussing a number of open questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源