论文标题

弥合空间和光谱域之间的差距:图神经网络的调查

Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks

论文作者

Chen, Zhiqian, Chen, Fanglan, Zhang, Lei, Ji, Taoran, Fu, Kaiqun, Zhao, Liang, Chen, Feng, Wu, Lingfei, Aggarwal, Charu, Lu, Chang-Tien

论文摘要

深度学习的成功已在各种机器学习任务中得到广泛认可,包括图像分类,音频识别和自然语言处理。作为这些领域之外的深度学习的扩展,图形神经网络(GNN)旨在处理非欧几里得图形结构,这对于以前的深度学习技术很棘手。现有的GNN使用各种技术提出,使直接比较和交叉引用更加复杂。尽管现有的研究将GNN分类为基于空间和基于光谱的技术,但尚未对其关系进行彻底的研究。为了缩小这一差距,本研究提出了一个系统地纳入大多数GNN的单个框架。我们将现有的GNN组织到空间和光谱域,并揭示每个域内的连接。在进一步研究中,对光谱图理论和近似理论的回顾建立了整个空间和光谱领域的牢固关系。

Deep learning's success has been widely recognized in a variety of machine learning tasks, including image classification, audio recognition, and natural language processing. As an extension of deep learning beyond these domains, graph neural networks (GNNs) are designed to handle the non-Euclidean graph-structure which is intractable to previous deep learning techniques. Existing GNNs are presented using various techniques, making direct comparison and cross-reference more complex. Although existing studies categorize GNNs into spatial-based and spectral-based techniques, there hasn't been a thorough examination of their relationship. To close this gap, this study presents a single framework that systematically incorporates most GNNs. We organize existing GNNs into spatial and spectral domains, as well as expose the connections within each domain. A review of spectral graph theory and approximation theory builds a strong relationship across the spatial and spectral domains in further investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源