论文标题
量子信号处理中有效的相位因子评估
Efficient phase-factor evaluation in quantum signal processing
论文作者
论文摘要
量子信号处理(QSP)是一种强大的量子算法,可准确在量子计算机上实现矩阵多项式。基于QSP的量子算法的渐近分析表明,对于一系列任务,例如哈密顿模拟和量子线性系统问题,可以原理获得渐近最佳的结果。 QSP的另一个好处是,它使用了最少数量的Ancilla Qubt,这有助于其在接近中间的量子架构上实现。但是,到目前为止,还没有经典稳定的算法可以计算构建QSP电路所需的相位因子。现有方法需要使用可变精度算术,并且只能应用于相对较低程度的多项式。我们在这里提出了一种基于优化的方法,该方法可以使用标准的双精度算术操作准确地计算相位因子。我们证明了这种方法的性能,并应用于哈密顿模拟,特征值滤波和量子线性系统问题。我们的数值结果表明,优化算法可以找到相位因子,以准确地近似于$ 10,000 $的多项式近似于$ 10^{ - 12} $。
Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrix polynomials on quantum computers. Asymptotic analysis of quantum algorithms based on QSP has shown that asymptotically optimal results can in principle be obtained for a range of tasks, such as Hamiltonian simulation and the quantum linear system problem. A further benefit of QSP is that it uses a minimal number of ancilla qubits, which facilitates its implementation on near-to-intermediate term quantum architectures. However, there is so far no classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits. Existing methods require the usage of variable precision arithmetic and can only be applied to polynomials of relatively low degree. We present here an optimization based method that can accurately compute the phase factors using standard double precision arithmetic operations. We demonstrate the performance of this approach with applications to Hamiltonian simulation, eigenvalue filtering, and the quantum linear system problems. Our numerical results show that the optimization algorithm can find phase factors to accurately approximate polynomials of degree larger than $10,000$ with error below $10^{-12}$.